Optimizing and Controlling Processes through Statistical Process Control (SPC)

Alessandro Anzalone, Ph.D.
Hillsborough Community College, Brandon Campus

Agenda

1. Statistical Process Control Defined
2. Rationale for SPC
3. Control Chart Development
4. Management’s Role in SPC
5. Role of the Total Quality Tools
6. Authority over Processes and Production
7. Implementation and Deployment of SPC
8. Inhibitors of SPC
9. References
“In the middle of difficulty lies opportunity.”
Albert Einstein

http://dracus.wordpress.com/tag/albert-einstein/

Statistical Process Control Defined

The origin of what is now called statistical process control (SPC) dates to 1931 and Dr. Walter Shewhart’s book “The Economic Control of Quality of Manufactured Product”. Shewhart, a Bell Laboratories statistician, was the first to recognize that industrial processes themselves could yield data, which, through the use of statistical methods, could signal that the process was in control or was being affected by special causes (causes beyond the natural, predictable variation). The control charts used today are based on Shewhart’s work. These control charts are the very heart of SPC. What may not be as obvious is that Shewhart’s work became the catalyst for the quality revolution in Japan and the entire movement now called total quality. We tend to look at SPC as one piece of the whole total quality picture, and it is, but it is also the genesis of total quality.
Statistical Process Control Defined

Statistical process control (SPC) is a statistical method of separating variation resulting from special causes from variation resulting from natural causes in order to eliminate the special causes and to establish and maintain consistency in the process, enabling process improvement.

Rationale for SPC

1. Control of variation
2. Continual improvement
3. Predictability of processes
4. Elimination of waste
5. Product inspection

<table>
<thead>
<tr>
<th></th>
<th>1999 PP100</th>
<th>2004 PP100</th>
<th>Percentage of Improvement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Japanese</td>
<td>144</td>
<td>111</td>
<td>23</td>
</tr>
<tr>
<td>Korean</td>
<td>227</td>
<td>117</td>
<td>48</td>
</tr>
<tr>
<td>European</td>
<td>171</td>
<td>122</td>
<td>29</td>
</tr>
<tr>
<td>Domestic</td>
<td>177</td>
<td>123</td>
<td>30</td>
</tr>
</tbody>
</table>

Rationale for SPC

Control of variation

Figure 18-1
Frequency Distribution Curve: Normal Curve

Figure 18-2
Frequency Distribution Curve: Process Not as Precise as Figure 18-1
Rationale for SPC

Control of variation

Figure 18-3
Bimodal Frequency Distribution Curve

Figure 18-4
Frequency Distribution Curve: Narrowed (Less Variation) Relative to Figure 18-1
Rationale for SPC

Continual improvement

Before a process can be improved, it is necessary to understand it, identify the external factors that may generate special causes of variation, and eliminate any special causes that are in play. Then, and only then, can we observe the process in operation and determine its natural variation. Once a process is in this state of statistical control, it can be tracked, using control charts, for any trends or newly introduced special causes. Process improvements can be implemented and monitored. Without SPC, process improvement takes on a hit-or-miss methodology, the results of which are often obscured by variation stemming from undetected factors (special causes). SPC lets improvements be applied in a controlled environment, measuring results scientifically and with assurance.

Rationale for SPC

Predictability of processes

Few things in the world of manufacturing are worse than an undependable process. Manufacturing management spends half its time making commitments and the other half living up to them. If the commitments are made based on unpredictable processes, living up to them will be a problem. The only chance manufacturing managers have when their processes are not predictable is to be especially conservative when making commitments. Instead of keying on the best past performance, they look at the worst production month and base their commitments on that. This approach can relieve a lot of stress but can also lose a lot of business. In today's highly competitive marketplace (whether for a manufactured product or a service) organizations must have predictable, stable, consistent processes. This can be achieved and maintained through SPC.
Rationale for SPC

Elimination of waste

Statistical process control is the key to eliminating waste in production processes. It can do the same in virtually any kind of process. The inherent nature of process improvement is such that as waste is eliminated, the quality of the process output is correspondingly increased.

Product inspection

After supplier processes are under control and being tracked with control charts, manufacturers can back off the customary incoming inspection of materials, resorting instead to the far less costly procedure of periodically auditing the supplier’s processes. SPC must first be in place, and the supplier’s processes must be shown to be capable of meeting the customer’s specifications.

This also applies internally. When a company’s processes are determined to be capable of producing acceptable products, and after they are in control using SPC, the internal quality assurance organization can reduce its inspection and process surveillance efforts, relying to a greater degree on a planned program of process audits. This reduces quality assurance costs and, with it, the cost of quality.
Control Chart Development for Variables Data (Measured Values)

Consider an example using x charts and R-charts. These charts are individual, directly related graphs plotting the mean (average) of samples (\bar{x}) over time and the variation in each sample (R) over time. The basic steps for developing a control chart for data with measured values are these:

1. Determine sampling procedure.

2. Collect initial data of 100 or so individual data points in k subgroups of n measurements.
 - The process must not be tinkered with during this time—let it run.
 - Don’t use old data—they may be irrelevant to the current process.
 - Take notes on anything that may have significance.
 - Log data on a data sheet designed for control chart use.
Control Chart Development

Control Chart Development for Variables Data (Measured Values)

3. Calculate the mean (average) values of the data in each subgroup (\(\bar{x} \)).
4. Calculate the data range for each subgroup (R).
5. Calculate the average of the subgroup averages (\(\bar{x} \)). This is the process average and will be the centerline for the \(\bar{x} \) chart.
6. Calculate the average of the subgroup ranges (R). This will be the centerline for the R-chart.

7. Calculate UCL and LCL. UCL and LCL represent the ±3σ limits of the process averages and are drawn as dashed lines on the control charts.
8. Draw the control chart to fit the calculated values.
9. Plot the data on the chart.
Control Chart Development

Control Chart Development for Variables Data (Measured Values)

The p-Chart

Control Chart Development

Control Chart Development for Attributes Data (Counted Data)

The p-Chart
Control Chart Development

Control Chart Development for Attributes Data (Counted Data)

The c-Chart

![c-Chart example](image)

Figure 18–17: c-Chart Power Supply Defects

Control Chart Development

The Control Chart as a Tool for Continual Improvement

![Control Chart examples](image)

Figure 18–18: Succession of Control Charts
Control Chart Development

<table>
<thead>
<tr>
<th>Data Category</th>
<th>Chart Type</th>
<th>Statistical Quantity</th>
<th>Application</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variables (measured)</td>
<td>x-bar-R (1, R)</td>
<td>Mean value and range</td>
<td>Charts dimensions and their precision, weight, time, strengths, and other measurable quantities. Example: Anything physically measurable.</td>
</tr>
<tr>
<td></td>
<td>x-bar-SM (1, R)</td>
<td>Median and range</td>
<td>Charts measurable quantities, similar for x-R, but requires fewer calculations compared to x-SM. Examples: Hose diameters.</td>
</tr>
<tr>
<td></td>
<td>Individual measured</td>
<td>Individual measured values</td>
<td>Used with long sample intervals, when subgrouping is not practical. Examples: Products made in batches such as solutions, coatings, etc., or grouping too expensive (e.g., destructive testing). Histogram must be normal.</td>
</tr>
<tr>
<td>Attributes (counted)</td>
<td>p-chart</td>
<td>Percentage defective (defect fraction defective)</td>
<td>Charts the number of defects in samples of varying sizes as a percentage of total. Examples: Anywhere detects can be counted.</td>
</tr>
<tr>
<td></td>
<td>n-bar chart</td>
<td>Number of defective items</td>
<td>Charts the number of defects in a sample. Producer's levels result when an item is total.</td>
</tr>
<tr>
<td></td>
<td>u-chart</td>
<td>Number of defects</td>
<td>Charts the number of defects in a product (e.g., percent of defects) Example: Specific assemblies or parts (e.g., PC boards, lines).</td>
</tr>
<tr>
<td></td>
<td>c-chart</td>
<td>Number of defects per unit area, time,</td>
<td>Charts the number of defects in a product of varying area (e.g., uniform product, temperature, concentration, power, etc.).</td>
</tr>
</tbody>
</table>

Figure 18-19
Common Control Charts and Their Applications

Control Chart Development

Statistical Control Versus Capability

Figure 18-20
In Control and Capable Are Not the Same Thing
Management’s Role in SPC

As in other aspects of total quality, management has a definite role to play in SPC. In the first place, as Deming has pointed out, only management can establish the production quality level. Second, SPC and the continual improvement that results from it will transcend department lines, making it necessary for top management involvement. Third, budgets must be established and spent, something else that can be done only by management.

Role of the Total Quality Tools

Some may consider it inappropriate to include tools other than control charts in a discussion of SPC. However, we take the broader view and include several tools:

- Pareto charts
- Cause-and-effect diagrams
- Stratification
- Check sheets
- Histograms
- Scatter diagrams
- Run charts and control charts
- Flowcharts
- Design of experiments
- Failure mode and effects analysis (FMEA)
Role of the Total Quality Tools

SPC does not start the moment a control chart is employed. Before SPC can be fully implemented, a lot of work must be done to eliminate the special causes of variation in the process concerned. Consequently, several quality tools will be used before it is time to develop and implement a control chart. When does SPC start? It starts when someone begins cleaning up the process. In the final analysis, this question is not that important because the quality tools come into play either to support SPC or to be part of the SPC package, depending on the definition used.

Role of the Total Quality Tools

With SPC, the total quality tools have a dual role. First, they help eliminate special causes from the process so that the process can be brought under control. (Remember that a process that is in control has no special causes acting on it.) Only then can the control charts be developed for the process and the process monitored by the control charts. Their second role comes into play when, from time to time, the control chart reveals a new special cause or when the operator wants to improve a process that is in control.
Operators who use SPC to keep track of their processes must have the authority to stop the production process when SPC tells them something is wrong. As long as the plots on the control chart vary about the process average but do not break through a control limit, the process is in control and is being influenced by the common causes of variation only. Once a incursion is made or the operator sees a run of several plots all on one side of the process average, he or she has good reason to believe that the process needs attention. The operator should be able to stop the process immediately.

Two Attitudes Toward Line Stoppages

Stopping production lines is seen differently by the traditional factory and the total quality factory.

Traditional Factory
- Line stops because: Broken machine, missing or incorrect parts, operator problem, and so forth.
- Reaction: Find a quick fix; get line moving again. Try to determine and correct the cause later.
- Result: Production of defective products and propensity for recurrence.
- Attitude: Line stoppages are to be avoided at nearly any cost.

Total Quality Factory
- Line stops because: Operator detected an indication of a process problem (e.g., SPC limit penetration or a run).
- Reaction: Determine cause and eliminate before restoring production.
- Result: Minimizes production of defective product; process becomes more robust.
- Attitude: Line stops represent opportunities for improvement.

Source: Stanley Davis.
A number of factors can inhibit the implementation of SPC. With SPC, there is not usually the kind of philosophical resistance that is common with some aspects of TQM. However, it is true even with SPC that there must be a management commitment because there will be start-up costs associated with implementation. The most common inhibitor of SPC is lack of resources.
Inhibitors of SPC

Other important SPC inhibitors are:

- Capability in Statistics
- Misdirected Responsibility for SPC
- Failure to Understand the Target Process
- Failure to Have Processes Under Control
- Inadequate Training and Discipline
- Measurement Repeatability and Reproducibility
- Low Production Rates

References

Optimizing and Controlling Processes through Statistical Process Control (SPC)

Alessandro Anzalone, Ph.D.
Hillsborough Community College, Brandon Campus