

Hillsborough Community College, Brandon Campus

Angle Measurement

Sections:

1. Overview

2. Background
3. Angles
4. Angle Measurement
5. The Level
6. The Protractor
7. Trigonometric Functions
8. Sine Bars and Plates
9. Other Instruments for Angle Measurement
10. References

Overview

All length and angle standards are arbitrary human inventionseven the light wave standard ($2.99796 \times 10^{8} \mathrm{~m} / \mathrm{s}$ or $186,284 \mathrm{mi} / \mathrm{s}$)because even though light is a natural phenomenon, man created a length standard out of it. One standard, however, is not an arbitrary creation of man: it actually exists in nature-the circle.

The circle can be the path of an electron around the nucleus of its atom or the circumference of a planet, but its geometry is always the same. The parts of the circle always have the same relationships to each other; therefore, the circle is a universal standard that we can re-create anywhere at any time to measure angles. Angular measurement is inescapable in all technical endeavors, used in every phase of life, from botany and carpentry to billiards and marbles. Squares, in all of their diverse forms, are the most basic of the angle-measurement instruments

Background

The Circle

A circle is a curve consisting of points in a plane all equally distant from a center point. It is different from all other curves because it is the same at all points. If we turn a circle around its center in the same plane, the circle appears exactly the same as it did before we turned it: all new positions are exactly like the original position, which is a characteristic of circles called roundness.

We form a circle by continuous motion of fixed length around a point; therefore, the perfection of the circle is independent of the instrument we use to scribe it. In contrast, when we use a straightedge to create a line, we duplicate all the errors of the straightedge in the line.

Angles

$$
\angle=\mathrm{AOB}
$$

Angles

Angles

similar right triangles

Angles

Side opposite Hypotenuse $=\quad$ sine of given angle (sin)
$\frac{\text { Side adjacent }}{\text { Hypotenuse }}=$ cosine of given angle (cos) Hypotenuse
$\frac{\text { Side opposite }}{\text { Side odjacent }}=$ tangent of given angle (tan)
$\frac{\text { Side adjacent }}{\text { Side opposite }}=$ cotangent of given angle (cot)

Angle Measurement

	Equivalent Instrumenis	
Linear Measurement	Type	Angular Measurement
Steel Rule	scaled	Plain Protractor
Combination Square	scaled	Protractor Head of combination set
Vernier Caliper	vernier	Vernier Protractor
Micrometer	mechanical	Index Heads
Gage Blocks	standards	Angle Blocks
Comparators	comparison	Sine Devices with comparators
Measuring Microscopes	optical	Autocollimators

Angle Measurement

Angle Measurement

FUNCTIONAL FEATURES precision squares metrological features

Angle Measurement
 smashed fingers result.

Angle Measurement

Angle Measurement

-20 29

The Level

The Level

The Level

The Level

Precision Level

Metrological Features

Functional Features
(A) Ground Graduated Level Vial
(C) Screw Adjustment
(B) Reference Plane
(D) Insulating Top Plate
(E) Cross Test Level

The Level

Reading A Level

	Reading Readings: A Centered

\square
One Division Left
Left high by 0.0005 in . in 12 in . (Negative reading)

C
One Division Right Right high by 0.0005 in. in 12 in

| D $\quad 1\|\mid\\|k\\|+1$ | | | | | | |
|---|---|---|---|---|---|---|---|---|
| Three Divisions Right | Right high by 0.0015 in. in 12 in.
 (Positive reading) |
| E | \|II| |||||| |
| No Bubble | Completely out of range |

The Level

Reliability With Levels

For Precise Measurement:

1. Take readings from both ends of the vial.
2. Reverse level.
3. Repeat readings from both ends.
4. Average the four readings.
5. Repeat all steps for critical cases.

The Level

With 10 in. measurement base, $\mathbf{0 . 0 0 0 5} \mathrm{in}$. rise is one division.

With 5 in. measurement base, 0.0005 in. rise

With 2.5 in. measurement base, 0.0004 in . rise is 3
divisions. And with 1.0 in . measurement base,
0.000015 in. is 3 divisions.

The Protractor

The Protractor
rule for reading vernier protractors

The Protractor

The Protractor

000000

The Protractor

Reliabiluty with Protractors

Mechanical considerations:

1. Can both the base and the blade reach their respective surfaces unobstructed?
2. Is overconstraint causing erroneous contact?
3. Do burrs, dirt, or excessive roughness interfere with intimate contact?

Positional considerations:

(Consider angle in yz plane.)

1. Is the vertical axis of the instrument parallel to the plane of the angle?
2. Is the horizontal axis of the instrument parallel to the plane of the angle?

Observational considerations:

1. Is the reading the complement of the angle being measured?
2. Is the reading the supplement of the angle being measured?
3. Does parallax error exist?
4. Are you conscious of bias?

The Protractor

Care of the Universal Bevel Protractor

Before use:

1. Wipe off dust and oil
. Examine for visual signs of damage or abuse
. Run fingers along base and blade to detect burrs.
2. Check mechanical movement for freedom.
3. Check clamps for security.
4. Allow instrument to normalize.
5. Determine that the instrument has been recently calibrated.

During use:

1. Keep case nearby so that instrument may be placed in case rather than on hard surface when not being used.
2. Avoid excessive handling to minimize heat transfer.
. Do not slide along abrasive surfaces.
3. Do not overtighten clamps.
. Do not spring or bend by overconstraint.
4. Take precautions to avoid dropping instrument and to avoid dropping objects on it.
5. Avoid work near heat sources.

After use:

1. Clean thoroughly. Do not use compressed air, which could drive particles into instrument. Dip in solvent and shake dry if exposed to cutting fluids.
2. Lubricate moving parts.
3. Apply thin rust-preventative lubricant.
4. Replace in case.

Trigonometric Functions

0

Trigonometric Functions

Trigonometric Functions

Sine Bars and Plates

the sine bar

Sine Bars and Plates

Sine Bar Measurement Variables

Geometric:

1. Parallelism of the working surface to the centerline of the cylinders
2. Squareness of the axes of the cylinders to the instrument
3. Roundness of the cylinders

Mechanical:

1. Error in center-to-center distance
2. Differences in cylinder diameters
3. Surface imperfections, such as insufficient flatness of working surface

Setup:

1. Error in two sets of height supports
2. Imperfect reference surface

Sine Bars and Plates

Sine Bars and Plates

Other Instruments for Angle Measurement

References

http:// www.diytrade.com/ china/ 4/ products/ 5257201/Circular_Bubble_Level.html http:// on-the-road.rv-supply.com/levels.htm
http:// www.toolmanyardley.co.uk/files/ ecomproducts-image-300.jpg
http://www.nysry.com/photos/Phase6/080601 Pix/080601 Digital Level Work 2.jpg
http://www.fusetek.com/thumbnails/ 2.929271.jpg
http://laser-measurement-
tools.com/magento/ media/ catalog/ product/ cache/ 1/image/ 5e06319eda06f020e43594a9c230972
d/f/i/file.jpg
http:// www.bjcandc.com/images/products/BEVEL_PROTRACTOR.jpg
http:// www1.fccj.edu/lchandouts/trigresources/ Unit circle angles.png
http:// www.subtool.com/tp/imgs/ 9118-5\%20Sine\%20Block.jpg
http:// www.subtool.com/ st/imgs/ SV-411-S2\%20SineSet\%20Sine\%20Vise.jpg
http:// www.subtool.com/ st/ imgs/ ESPC-612-T-
S2\%20SineSet\%20Electromagnetic\%20Compound\%20Sine\%20Plate.jpg
http:// wb8.itrademarket.com/pdimage/ 62/277462_pm 5 large 216eb.jpg
http:// news.thomasnet.com/images/large/ 467/467353.jpg
http://www.finelinehair.com/home/rotary table 6 inch.jpg
http://img.directindustry.com/images_di/photo-g/rotary-indexing-table-375867.jpg

Alessandro Anzalone, Ph.D.

Hillsborough Community College, Brandon Campus

